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Let L,(f; x) be the Lagrange interpolation polynomial to f at the zeros of the
orthonormal polynomial of degree n for the Freud weight W, with an exponent Q.
We have the following. Let W(>0)eL,(R) and 0 <p < oo be given. If for every
continuous function f vanishing outside a finite interval

tim [ [0~ L 01 W) T =0

n—ow J_g

holds, then we have

r [W5'(x)/(1+]x)]” W(x) dx < o0.
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1. INTRODUCTION

Let Q be an even, continuous, and real-valued function defined on the
real line R=(—o0, w0), and let Q' € C(R), Q'(x)>0 on (0, o0), and Q" be
continuous on (0, o). Furthermore, we assume that for certain constants
1<A<B,

A< {(d)dx)(xQ'(x))}/Q'(x)<B,  xe&(0, ).

We call the function Q(x) a Freud exponent, and then we consider what
is called a Freud weight

W(x) =exp{ —Q(x)}. (11)
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LAGRANGE INTERPOLATION 117

We note that if «>1, then W2(x)=exp(—|x|*) is a Freud weight. The
Mhaskar—-Rahmanov—Saff number «, is defined as the positive root of the
equation

u=(2/n) fol a,10a, (1 =) "2 dr,  u>0.

The number «, plays an important role in the study of the approximation
theory. Let 77, denote the class of real polynomials of degree at most n, and
let {p,(x)} ={p.(W4:x)}, p,ell, be the sequence of orthonormal poly-
nomials with respect to W32, that is,

[ ) px) W) dx =3, =

— 0

0, m#n,
1, m=n.

We denote the zeros of P,(x) by x,,, k=1, 2, ..., n, where
xnn<xn71,n< <x1n'
Then, for a given fe C(R) the Lagrange interpolation polynomial L,(f")

based at the zeros {x,,} of P,(x) is defined to be a unique polynomial in
IT,_, such that

Ln(f; xlm) = f(xkn)> k= 1, 2, vy M.

Nevai obtained the following.

NEVAI'S THEOREM ([ 12]). Let L,(f; x) denote the Lagrange interpolation
polynomial at the zeros of P,(W3; x) for the weight W3(x) = exp(—x?). Let
W(=0)e L(R) and 0 <p < oo be given. Suppose that for every continuous
function f vanishing outside a finite interval,

fim [ 1£(x) = L,(f: %)|” W(x) dx=0.

n—w v _on

Then

rc [exp(x%/2)/(1+ x])]” W(x) dx < 0.

In this paper we extend Nevai’s Theorem for the Freud weight (1.1).
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THEOREM. Let W(=0)e L, (R) and 0<p<oo be given. If for every
continuous function f vanishing outside a finite interval

Tim [ L) = L %)17 W) de =0 (12)

holds, then we have

fm [W 5 (0)/(1+|x])]7 W(x) dx < 0. (13)

— 0

If in the theorem we consider especially the case of W(x)= W(x)
(14 |x|)=, A>1/p—1, then obviously we have (1.3). In this case, that is,
W(x)=Wpx)(1+ |x|)~“”, Lubinsky and Matjila have obtained a
complete solution as follows.

THEOREM OF LUBINSKY—MATIILA ([9]). Let l<p< oo, 4eR, a>0, and
&=min(1, a). Then for

lim H{f(x)*Ln(f; x)} WQ(X)(l + |x|)_A”Lp(R):O

to hold for every continuous function f € C(R) satisfying

lim | f(x)] Wo(x)(1+ |x[)*=0,

n— o
if p<A4, it is necessary and sufficient that
A> —a+1/p;
and if p>4 and o # 1, it is necessary and sufficient that
ai/p*(a‘c+d)n(l/6)(lf4/p):0(1)’ n— oo,
and if p>4 and o= 1, it is necessary and sufficient that

al/P= @O0 =40 — O(1/log n), n— 0.
Our theorem asserts that if for a certain W(>=0)e L,(R),

[ oW o+ 1317 Wix) dx= o0

— o0
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holds, then for a continuous function f we see that L,(f) does not converge

to f-

tim [* [0 = L(f: )17 W] dx £0.

2. FUNDAMENTAL LEMMAS

Throughout this paper ¢ will denote a positive constant independent of
n and x, and the letter ¢ will denote a constant which may differ at each
different occurrence, even in the chain of inequalities. Let c(a, b, ...) mean
a constant depending on a, b, .... By f(x)~ g(x) we denote ¢, < f(x)/g(x)
< ¢, for certain positive constants ¢;, ¢,, and for all relevant x.

Lemma 2.1. Let |x| <ca, for certain constants ¢ >0. Then we have

Wo(x) ~ Wy(x') for |x—Xx'|<ka,/n. (2.1)

Proof. For |x—x'| <ka,/n (|x|, |x'| <ca,) we see
10(x) = O(x")[ < |Q'(E)| ka,/n (x<C<X)
<|Q'(ca,)| ka,/n
< c(k)
by [6, Lemma 5.1(c)]. Consequently, we see

Wo(x)/Wo(x'), Wo(x")]Wo(x) <exp {|Q(x) — O(x)]}

<exp {c(x)},

that is, (2.1) follows. ||

Let { p,(x)} = {p.(W5: x)} be the orthonormal polynomials with respect
to W2Q, and let r,=v,_,/y,, wWhere y, is the leading coefficient of p,(x),
that is, p,(x)=y,x"+ ---. The following lemma is useful for an estimate of

values of p/(x).

LemmA 2.2 (cf. [2, Theorem 5], [ 10, Theorem 3.27). We have an equa-
tion

Pu(x)=A,(x) p,—1(x) = B,(x) p,(x),
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where

and

Ox, ) ={Q'(x) = Q' ()} /(x—1).

Proof. We can write p/(x) in the Fourier expansion in terms of the
reproducing kernel K,(x, t) as

P =" 0 Kl 1) Wit d, (22)

where
WX, 1) = Z Pi(x) pil?)
=1, pX) (1) = (1) p, (X))} /(x (2.3)
Since [~ p,(0){(d/dr) K,(x, 1)} WP(1)dt=0, by (2.2) and (2.3)
ro==[" {(dlde) W(0)} dr

= Ji:c p.(t) K, (x,t) Q'(t) WZQ(Z) dt

=1, [ A0 pu (0= 1) D ()}

— o0

x Q(x, 1) Wy(t) dt
P2(0) O, 1) W(1) dr} P i()

_{rn [

— o0

:An(x)pn—l('x)_Bn(x)pn(x)‘ I

Pal1) P (1) O, 1) W1) dz} pal)
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LEmMmA 2.3. Let |x|<da, (0<d<1). Then for a certain constant ¢ >0,
|(X)] Wo(x) < cna, >

holds.
Proof. Since by [6, (12.21)] and [6, Theorem 12.3(b)] we have

A,(x) ~nfr, ~nja,  (|x]|<2a,),

we see that by Schwarz’s inequality

o 12
BoI<|n [ pin o Wi ar

— 00

0 1/2
<[rf " p0 Qe Wi al
<cnfa,,.
On the other hand, by [ 6, Corollary 1.4],
|Pu(X)] Wo(x), [Py a(X)] Wo(x)<ca, ' (x| <da,).
Thus by Lemma 2.2 if |x| <Ja,,, then

|PL(X)] Wol(x)
S |A)] Py 1(X)] Wo(x) + [B(x)] | p(x)] Wolx)

—3,2
<cna,;”"*. |

LemmA 2.4, Let |x;,|, |x;_ ,1 <da, (0<d<1): and let
[Pl = max |p,(x)], X <Xy <Xy e (24)

n S G—1n
Then we have

—1/2

(1) |pn(x]n)| WQ(f]n) Nan ]
and
(11) |Xjn_xjn|9 |)Ejn_xj71,n| Nan/na (25)

that is,

(111) x/'—l,n_xjnNan/n'
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Proof. (i) By [6, Corollary 1.3], for x;, <x; ,,,<x;_; ,, where |x,,],
Ix; 1 .| <ba,, we see

|Pu( X n e D) WXy i) ~a, 12 (2.6)
On the other hand, [6, Corollary 1.4] means
[Pu(X)| Wo(x)<ca,'? (x| <da,).

Therefore we have (i).
(i1) From (i) we see

ca, (%5, —x;,) <IpAX)| WolX,)/(X5,— x;,)
=[P WolX;) (X, <C<X,). (2.7)
Since by [6, Corollary 1.2 (b)] we see
|X;, — ¢l <ka,/n

for some x>0, Lemma 2.1 means Wy(x,,) < cWy(&). Thus from (2.7) and
Lemma 2.3 we have

ca, "2 )(X;,—x;) <c|pu(&)] Wo(&) <cna, 2,
that is,
Can/n < |)Ejn _xjn |

Consequently, we obtain |x;,—x,,| ~a,/n, and similarly |X,,—x; , ,|~
a,/n.
(i) It is trivial from (2.5). |
The following lemma is important itself. It gives certain exact values of
p.(x) in each interval
1,(6,¢e)=[x;,+ea,/n, x;_, ,—ea,] N[ —da,,da,]. (2.8)

Lemma 2.5. Let 1,(6,¢) be defined in (2.8). For each 0 <6 <1 there
exists ¢ >0 such that

xjn+8a)1/n <xj71,)1_8a}1/n9 (29)
whenever |x,, |, |x; _, ,| <éa,. Then
|pn(x)| WQ(X) Nan_l/zs xel/’n(éa 8)’ (210)

holds uniformly with respect to all I,(9, &) # ¢.
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Remark. We can also give certain exact values of p/(x) in each interval

I,(0,¢)=1[x,,—e¢a,/n,x;,+éea,/n] [ —da,,da,].

jn
For each 0 < ¢ <1 there exists ¢ >0 such that

=32

X€ I_jn(éa 3)7

|PL(X)] Wo(x) ~na,

holds uniformly with respect to all 1,,(d, ) # ¢.

Proof of Lemma 2.5. (i) It follows from Lemma 2.4(iii) that there exists
s>0 such that (2.9) holds for every j satisfying |x,,|, |x;_, ,|<da,. Let
I,(6,¢)#¢, then X, €[x,,,x;, ,] is defined in (2.4). In each interval

x , X;,) or (X,,, x;_ the polynomial p,(x) has at most one inflection
jn> Xjn jns Xj—1.n poly p

point. We shall first consider p,(x) in [x;,, X;,]. Then we have one of two
following cases.

(a) [p,(x)] is concave on [x;,, X;,]-

(b) There exists x,, <X}, <X, such that |p,(x)| is convex on

jn jn

X, X% ], and concave on [ X, X,,
jn jn J: Ji

Let us now define the line

Y =P NX, = x,) } (x —x,).

Then for the case of (a) we see

Up )/ —xp) (X —x,) <Ipu(x)l,  xelx;,, 5,1 (211)

We shall treat the case of (b). If (2.11) is not correct, then we consider the
line

Y =1pu(xp)l (x —x),
and so we see
()l (x—x,) < |pu(x)l,  xelx,, x;,] (2.12)
Using Lemma 2.4(i), (ii) and Lemma 2.1, the inequality (2.11) means
cna, 2(x —x;,) < p,(X)| Wo(x),  xe[x;, X1 (2.13)

If (2.12) holds, then by Lemma 2.1 and [6, Corollary 1.3] we also obtain
(2.13). Hence if x;, +ea,/n <x <X,,, then for a constant c(¢)

/na

0<c(e)a, '»<|px)| Wy(x). (2.14)
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On the other hand, from [6, Corollary 1.4]
|Pu(X)] Wo(x)<ca, "2, |x[<da,,
that is, with (2.14) we have for xe[x,, +¢a,/n, X,,]
|Pa(X)] Wo(x)~a, 2. (2.15)

Similarly, for xe[x,,, x;

n> X; 1., —€a,/n] we also have (2.15). Therefore, we
obtain (2.10). |

3. PROOF OF THEOREM

Now, we shall prove the theorem. The proof is along the same lines as
Nevai’s.

Proof of Theorem. We consider the space Cy(—2, —1) which consists
of continuous functions on R with support in [ —2, —1]. By our assump-
tion, (1.2) is satisfied for fe Co( —2, —1). Hence for the linear functional
L,(f)on Cy(—2, —1) we can apply the uniform boundedness theorem (cf.
Theorem 10.19 of [ 11, p. 182]), and so for fe Co(—2, —1) we have

["ILpor wdvse max (701", (3.1)

— —2<x< —1
Let {p,(x)} be the orthonormal polynomials with respect to the weight
Wé(x), and for each n=1,2,3,.. let us consider a function g, e C,
(=2, —1) such that

max |gn(x)| = 19 gn(xkn)ZSign p;l(xkn)’ Xikn e(_za _1)

—2<x< —1
Then we see
L,(8.:x)=p,(x) Z |Pu(X) | (x = x,)
By [6, Corollary 1.3]
Puxe)l P ~nT ), —2<x, < — 1,

and Lemma 2.4(iii)

Num. [{k; x,, €[ =2, =11} ] ~n/a,,
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where Num. [ S] denotes the number of elements of the set S. Thus for
x>0

1L, (g, x)| = c(1+x)7" |p(x)| n~"a;*na,
=ca,’(1+x)7" | p,(x)|. (3.2)

From (3.1) and (3.2),

A =1im sup f la}?p(x)/(1+x)|” W(x) dx

n— oo

< ¢ lim sup f &0 )P W(x) dx

n— oo

<c¢  max |g,(x)|”
—2<x< —1

=c< 0. (3.3)
Let us define

I] I/n( ):[xjn_l—san/n’ xjfl,n_aan/n]’

I_ We)=[x;,_ ,—ea,/n,x; | ,+ea,/n], j=2,3,4, ...
Let 0 <d <1, then, from (2.14),
|pn(x)| WQ(X)> Can_l/za xelin N [07 561},’],

where c¢ is independent of n. Thus by (3.3)

¢ Z W5 (x)/(1 4 x)|” W(x) dx < A. (34)

j=2 Imm [0, da,]

Therefore, we also see that by exchanging n for n+ 1 in (3.4) we have

c i W5 (x)/(14x)|” W(x) dx < A. (3.5)

j=2 l/'- n+1 000, 0a, 1]
Here, we can show that for a certain ¢ >0,

( )m[O 5(’1 ] /n+1( )m[oaéan+l]' (36)
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In fact, by (2.6) for |x; , | <da, there exists ¢ >0 such that
Ca;l/z < |pn(xj,n+l) WQ(xj,n+l)|

= |{pn(xj,n+l)/(xj,n+l_xjn)} WQ(xj,i1+l)| (xj,n+l _xjn)

< |pu&) WO (X i1 —X5)

S("’/la;:3/2(xj', n+1_xjn)
(see Lemma 2.3). Thus we see

Can/n < (x_/',n+ 1 xjn)a
consequently, we have
xj,n+ 1 _xjn9 xjfl,n_xj,nJrl NCZ,,/n.

This means (3.6). Hence by (3.5) and (3.6)

n

|W§1(x)/(1 +x)|? W(x) dx

=2 91,010.64,]

n+1
<c W o (x)/(1+x)|” W(x)dx<A. (3.7)

5 1,010,684,
Using (3.4) and (3.7), we conclude

f: W 5 ()1 +x)|7 W(x) dx < cA,
where c¢ is independent of n. Therefore

j:o W 5 ()1 + )7 W(x) dx < cA. (3.8)
Similarly, we have
foﬁ W5 (xX)/(14|x)]” W(x) dx <cA. (3.9)

— oo

Consequently, by (3.8) and (3.9) we have (1.3), that is, the theorem
follows. ||
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