Lagrange Interpolation Based at the Zeros of Orthonormal Polynomials with Freud Weights

R. Sakai

Asuke Senior High School, Kawahara 5, Yagami, Asuke-cho, Higashikamo, Aichi 444-24, Japan

Communicated by D. S. Lubinsky

Received June 10, 1996; accepted December 3, 1996

Let $L_n(f; x)$ be the Lagrange interpolation polynomial to f at the zeros of the orthonormal polynomial of degree n for the Freud weight W_Q with an exponent Q. We have the following. Let $W(\ge 0) \in L_1(\mathbb{R})$ and 0 be given. If for every continuous function <math>f vanishing outside a finite interval

$$\lim_{n \to \infty} \int_{-\infty}^{\infty} \left[|f(x) - L_n(f; x)|^p W(x) \right] dx = 0$$

holds, then we have

$$\int_{-\infty}^{\infty} [W_{Q}^{-1}(x)/(1+|x|)]^{p} W(x) dx < \infty.$$

© 1998 Academic Press

1. INTRODUCTION

Let Q be an even, continuous, and real-valued function defined on the real line $\mathbb{R} = (-\infty, \infty)$, and let $Q' \in C(\mathbb{R})$, Q'(x) > 0 on $(0, \infty)$, and Q'' be continuous on $(0, \infty)$. Furthermore, we assume that for certain constants $1 < A \leq B$,

$$A \leq \{ (d/dx)(xQ'(x)) \} / Q'(x) \leq B, \qquad x \in (0, \infty).$$

We call the function Q(x) a Freud exponent, and then we consider what is called a Freud weight

$$W_Q^2(x) = \exp\{-Q(x)\}.$$
 (1.1)
116

0021-9045/98 \$25.00

Copyright © 1998 by Academic Press All rights of reproduction in any form reserved. We note that if $\alpha > 1$, then $W_{\alpha}^2(x) = \exp(-|x|^{\alpha})$ is a Freud weight. The Mhaskar-Rahmanov-Saff number a_u is defined as the positive root of the equation

$$u = (2/\pi) \int_0^1 a_u t Q'(a_u t) (1 - t^2)^{-(1/2)} dt, \qquad u > 0.$$

The number a_u plays an important role in the study of the approximation theory. Let Π_n denote the class of real polynomials of degree at most n, and let $\{p_n(x)\} = \{p_n(W_Q^2; x)\}, p_n \in \Pi_n$ be the sequence of orthonormal polynomials with respect to W_Q^2 , that is,

$$\int_{-\infty}^{\infty} p_m(x) p_n(x) W_Q^2(x) dx = \delta_{mn} = \begin{cases} 0, & m \neq n, \\ 1, & m = n. \end{cases}$$

We denote the zeros of $P_n(x)$ by x_{kn} , k = 1, 2, ..., n, where

$$x_{nn} < x_{n-1, n} < \cdots < x_{1n}$$

Then, for a given $f \in C(\mathbb{R})$ the Lagrange interpolation polynomial $L_n(f)$ based at the zeros $\{x_{kn}\}$ of $P_n(x)$ is defined to be a unique polynomial in Π_{n-1} such that

$$L_n(f; x_{kn}) = f(x_{kn}), \qquad k = 1, 2, ..., n.$$

Nevai obtained the following.

NEVAI'S THEOREM ([12]). Let $L_n(f; x)$ denote the Lagrange interpolation polynomial at the zeros of $P_n(W_2^2; x)$ for the weight $W_2^2(x) = \exp(-x^2)$. Let $W(\ge 0) \in L_1(\mathbb{R})$ and 0 be given. Suppose that for every continuousfunction <math>f vanishing outside a finite interval,

$$\lim_{n \to \infty} \int_{-\infty}^{\infty} |f(x) - L_n(f; x)|^p W(x) dx = 0.$$

Then

$$\int_{-\infty}^{\infty} \left[\exp(x^2/2) / (1+|x|) \right]^p W(x) \, dx < \infty.$$

In this paper we extend Nevai's Theorem for the Freud weight (1.1).

THEOREM. Let $W(\ge 0) \in L_1(\mathbb{R})$ and 0 be given. If for every continuous function <math>f vanishing outside a finite interval

$$\lim_{n \to \infty} \int_{-\infty}^{\infty} \left[|f(x) - L_n(f; x)|^p W(x) \right] dx = 0$$
(1.2)

holds, then we have

$$\int_{-\infty}^{\infty} \left[W_{Q}^{-1}(x) / (1+|x|) \right]^{p} W(x) \, dx < \infty.$$
(1.3)

If in the theorem we consider especially the case of $W(x) = W_Q^p(x)$ $(1+|x|)^{-\Delta p}$, $\Delta > 1/p-1$, then obviously we have (1.3). In this case, that is, $W(x) = W_Q^p(x)(1+|x|)^{-\Delta p}$, Lubinsky and Matjila have obtained a complete solution as follows.

THEOREM OF LUBINSKY–MATJILA ([9]). Let $1 , <math>\Delta \in \mathbb{R}$, $\alpha > 0$, and $\hat{\alpha} = \min(1, \alpha)$. Then for

$$\lim_{n \to \infty} \|\{f(x) - L_n(f; x)\} W_Q(x)(1+|x|)^{-d}\|_{L_p(\mathbb{R})} = 0$$

to hold for every continuous function $f \in C(\mathbb{R})$ satisfying

$$\lim_{n \to \infty} |f(x)| W_{Q}(x)(1+|x|)^{\alpha} = 0,$$

if $p \leq 4$, it is necessary and sufficient that

$$\Delta > -\hat{\alpha} + 1/p;$$

and if p > 4 and $\alpha \neq 1$, it is necessary and sufficient that

$$a_n^{1/p - (\hat{\alpha} + \Delta)} n^{(1/6)(1 - 4/p)} = O(1), \qquad n \to \infty;$$

and if p > 4 and $\alpha = 1$, it is necessary and sufficient that

$$a_n^{1/p - (\hat{\alpha} + \Delta)} n^{(1/6)(1 - 4/p)} = O(1/\log n), \quad n \to \infty.$$

Our theorem asserts that if for a certain $W(\ge 0) \in L_1(\mathbb{R})$,

$$\int_{-\infty}^{\infty} \left[W_Q^{-1}(x) / (1 + |x|) \right]^p W(x) \, dx = \infty$$

holds, then for a continuous function f we see that $L_n(f)$ does not converge to f:

$$\lim_{n \to \infty} \int_{-\infty}^{\infty} \left[|f(x) - L_n(f; x)|^p W(x) \right] dx \neq 0.$$

2. FUNDAMENTAL LEMMAS

Throughout this paper c will denote a positive constant independent of n and x, and the letter c will denote a constant which may differ at each different occurrence, even in the chain of inequalities. Let c(a, b, ...) mean a constant depending on a, b, By $f(x) \sim g(x)$ we denote $c_1 \leq f(x)/g(x)$ $\leq c_2$ for certain positive constants c_1 , c_2 , and for all relevant x.

LEMMA 2.1. Let $|x| \leq ca_n$ for certain constants c > 0. Then we have

$$W_Q(x) \sim W_Q(x')$$
 for $|x - x'| \leq \kappa a_n/n.$ (2.1)

Proof. For $|x - x'| \leq \kappa a_n/n$ $(|x|, |x'| \leq ca_n)$ we see

$$\begin{aligned} |Q(x) - Q(x')| &\leq |Q'(\xi)| \, \kappa a_n / n \qquad (x < \xi < x') \\ &\leq |Q'(ca_n)| \, \kappa a_n / n \\ &\leq c(\kappa) \end{aligned}$$

by [6, Lemma 5.1(c)]. Consequently, we see

$$\begin{split} W_{\mathcal{Q}}(x)/W_{\mathcal{Q}}(x'), \ W_{\mathcal{Q}}(x')/W_{\mathcal{Q}}(x) \leqslant \exp\left\{|\mathcal{Q}(x) - \mathcal{Q}(x')|\right\} \\ \leqslant \exp\left\{c(\kappa)\right\}, \end{split}$$

that is, (2.1) follows.

Let $\{p_n(x)\} = \{p_n(W_Q^2; x)\}$ be the orthonormal polynomials with respect to W_Q^2 , and let $r_n = \gamma_{n-1}/\gamma_n$, where γ_n is the leading coefficient of $p_n(x)$, that is, $p_n(x) = \gamma_n x^n + \cdots$. The following lemma is useful for an estimate of values of $p'_n(x)$.

LEMMA 2.2 (cf. [2, Theorem 5], [10, Theorem 3.2]). We have an equation

$$p'_n(x) = A_n(x) p_{n-1}(x) - B_n(x) p_n(x),$$

where

$$A_{n}(x) = r_{n} \int_{-\infty}^{\infty} p_{n}^{2}(t) \,\overline{Q}(x, t) \,W_{Q}^{2}(t) \,dt,$$
$$B_{n}(x) = r_{n} \int_{-\infty}^{\infty} p_{n}(t) \,p_{n-1}(t) \,\overline{Q}(x, t) \,W_{Q}^{2}(t) \,dt,$$

and

$$\overline{Q}(x, t) = \{Q'(x) - Q'(t)\}/(x - t).$$

Proof. We can write $p'_n(x)$ in the Fourier expansion in terms of the reproducing kernel $K_n(x, t)$ as

$$p'_{n}(x) = \int_{-\infty}^{\infty} p'_{n}(t) K_{n}(x, t) W_{Q}^{2}(t) dt, \qquad (2.2)$$

where

$$K_n(x, t) = \sum_{k=0}^{n-1} p_k(x) p_k(t)$$

= $r_n \{ p_n(x) p_{n-1}(t) - p_n(t) p_{n-1}(x) \} / (x-t).$ (2.3)

Since $\int_{-\infty}^{\infty} p_n(t) \{ (d/dt) K_n(x, t) \} W_Q^2(t) dt = 0$, by (2.2) and (2.3)

$$\begin{aligned} p_n'(x) &= -\int_{-\infty}^{\infty} p_n(t) \ K_n(x, t) \{ (d/dt) \ W_Q^2(t) \} \ dt \\ &= \int_{-\infty}^{\infty} p_n(t) \ K_n(x, t) \ Q'(t) \ W_Q^2(t) \ dt \\ &= -r_n \int_{-\infty}^{\infty} p_n(t) \{ p_n(x) \ p_{n-1}(t) - p_n(t) \ p_{n-1}(x) \} \\ &\times \overline{Q}(x, t) \ W_Q^2(t) \ dt \\ &= \left\{ r_n \int_{-\infty}^{\infty} p_n^2(t) \ \overline{Q}(x, t) \ W_Q^2(t) \ dt \right\} \ p_{n-1}(x) \\ &- \left\{ r_n \int_{-\infty}^{\infty} p_n(t) \ p_{n-1}(t) \ \overline{Q}(x, t) \ W_Q^2(t) \ dt \right\} \ p_n(x) \\ &= A_n(x) \ p_{n-1}(x) - B_n(x) \ p_n(x). \end{aligned}$$

LEMMA 2.3. Let $|x| \leq \delta a_n$ (0 < δ < 1). Then for a certain constant c > 0, $|p'_n(x)| W_Q(x) \leq cna_n^{-3/2}$

holds.

Proof. Since by [6, (12.21)] and [6, Theorem 12.3(b)] we have

$$A_n(x) \sim n/r_n \sim n/a_n \qquad (|x| \le 2a_n),$$

we see that by Schwarz's inequality

$$|B_n(x)| \leq \left[r_n \int_{-\infty}^{\infty} p_n^2(t) \,\overline{Q}(x,t) \, W_Q^2(t) \, dt \right]^{1/2}$$
$$\times \left[r_n \int_{-\infty}^{\infty} p_{n-1}^2(t) \, \overline{Q}(x,t) \, W_Q^2(t) \, dt \right]^{1/2}$$
$$\leq cn/a_n.$$

On the other hand, by [6, Corollary 1.4],

$$|p_n(x)| W_Q(x), |p_{n-1}(x)| W_Q(x) \le ca_n^{-1/2} \quad (|x| \le \delta a_n).$$

Thus by Lemma 2.2 if $|x| \leq \delta a_n$, then

$$\begin{aligned} |p'_n(x)| \ W_Q(x) \\ \leqslant |A_n(x)| \ |p_{n-1}(x)| \ W_Q(x) + |B_n(x)| \ |p_n(x)| \ W_Q(x) \\ \leqslant cna_n^{-3/2}. \end{aligned}$$

LEMMA 2.4. Let $|x_{jn}|, |x_{j-1,n}| \leq \delta a_n \ (0 < \delta < 1)$: and let

$$|p_n(\bar{x}_{jn})| = \max_{x_{jn} \le x \le x_{j-1,n}} |p_n(x)|, x_{jn} < \bar{x}_{jn} < x_{j-1,n}.$$
(2.4)

Then we have

(i)
$$|p_n(\bar{x}_{jn})| W_Q(\bar{x}_{jn}) \sim a_n^{-1/2}$$
,

and

(ii)
$$|\bar{x}_{jn} - x_{jn}|, |\bar{x}_{jn} - x_{j-1,n}| \sim a_n/n,$$
 (2.5)

that is,

(iii)
$$x_{j-1,n} - x_{jn} \sim a_n/n$$
.

Proof. (i) By [6, Corollary 1.3], for $x_{jn} < x_{j, n+1} < x_{j-1, n}$, where $|x_{jn}|$, $|x_{j-1, n}| \le \delta a_n$, we see

$$|p_n(x_{j,n+1})| W_Q(x_{j,n+1}) \sim a_n^{-1/2}.$$
 (2.6)

On the other hand, [6, Corollary 1.4] means

$$|p_n(x)| W_Q(x) \leq c a_n^{-1/2} \qquad (|x| \leq \delta a_n).$$

Therefore we have (i).

(ii) From (i) we see

$$ca_{n}^{-1/2}/(\bar{x}_{jn} - x_{jn}) \leq |p_{n}(\bar{x}_{jn})| W_{Q}(\bar{x}_{nj})/(\bar{x}_{jn} - x_{jn})$$
$$= |p_{n}'(\xi)| W_{Q}(\bar{x}_{jn}) \qquad (x_{jn} < \xi < \bar{x}_{jn}).$$
(2.7)

Since by [6, Corollary 1.2 (b)] we see

$$|\bar{x}_{jn} - \xi| \leqslant \kappa a_n/n$$

for some $\kappa > 0$, Lemma 2.1 means $W_Q(\bar{x}_{jn}) \leq c W_Q(\xi)$. Thus from (2.7) and Lemma 2.3 we have

$$ca_n^{-1/2}/(\bar{x}_{jn}-x_{jn}) \leq c |p'_n(\xi)| W_Q(\xi) \leq cna_n^{-3/2},$$

that is,

$$ca_n/n \leqslant |\bar{x}_{jn} - x_{jn}|.$$

Consequently, we obtain $|\bar{x}_{jn} - x_{jn}| \sim a_n/n$, and similarly $|\bar{x}_{jn} - x_{j-1,n}| \sim a_n/n$.

(iii) It is trivial from (2.5).

The following lemma is important itself. It gives certain exact values of $p_n(x)$ in each interval

$$I_{jn}(\delta,\varepsilon) = [x_{jn} + \varepsilon a_n/n, x_{j-1,n} - \varepsilon a_n] \cap [-\delta a_n, \delta a_n].$$
(2.8)

LEMMA 2.5. Let $I_{jn}(\delta, \varepsilon)$ be defined in (2.8). For each $0 < \delta < 1$ there exists $\varepsilon > 0$ such that

$$x_{jn} + \varepsilon a_n/n < x_{j-1,n} - \varepsilon a_n/n, \qquad (2.9)$$

whenever $|x_{jn}|, |x_{j-1,n}| \leq \delta a_n$. Then

$$|p_n(x)| W_Q(x) \sim a_n^{-1/2}, \qquad x \in I_{jn}(\delta, \varepsilon), \tag{2.10}$$

holds uniformly with respect to all $I_{in}(\delta, \varepsilon) \neq \phi$.

Remark. We can also give certain exact values of $p'_n(x)$ in each interval

$$\bar{I}_{jn}(\delta,\varepsilon) = [x_{jn} - \varepsilon a_n/n, x_{jn} + \varepsilon a_n/n] \cap [-\delta a_n, \delta a_n].$$

For each $0 < \delta < 1$ there exists $\varepsilon > 0$ such that

$$|p'_n(x)| \ W_Q(x) \sim na_n^{-3/2}, \qquad x \in \bar{I}_{jn}(\delta, \varepsilon),$$

holds uniformly with respect to all $\bar{I}_{jn}(\delta, \varepsilon) \neq \phi$.

Proof of Lemma 2.5. (i) It follows from Lemma 2.4(iii) that there exists $\varepsilon > 0$ such that (2.9) holds for every *j* satisfying $|x_{jn}|$, $|x_{j-1,n}| \le \delta a_n$. Let $I_{jn}(\delta, \varepsilon) \neq \phi$, then $\bar{x}_{jn} \in [x_{jn}, x_{j-1,n}]$ is defined in (2.4). In each interval (x_{jn}, \bar{x}_{jn}) or $(\bar{x}_{jn}, x_{j-1,n})$ the polynomial $p_n(x)$ has at most one inflection point. We shall first consider $p_n(x)$ in $[x_{jn}, \bar{x}_{jn}]$. Then we have one of two following cases.

(a) $|p_n(x)|$ is concave on $[x_{jn}, \bar{x}_{jn}]$.

(b) There exists $x_{jn} < x'_{jn} < \bar{x}_{jn}$ such that $|p_n(x)|$ is convex on $[x_{jn}, x'_{jn}]$, and concave on $[x'_{jn}, \bar{x}_{jn}]$.

Let us now define the line

$$y = \{ |p_n(\bar{x}_{jn})| / (\bar{x}_{jn} - x_{jn}) \} (x - x_{jn}).$$

Then for the case of (a) we see

$$\{|p_n(\bar{x}_{jn})|/(\bar{x}_{jn}-x_{jn})\}(x-x_{jn}) \leq |p_n(x)|, \qquad x \in [x_{jn}, \bar{x}_{jn}].$$
(2.11)

We shall treat the case of (b). If (2.11) is not correct, then we consider the line

$$y = |p'_n(x_{jn})| (x - x_{jn}),$$

and so we see

$$|p'_{n}(x_{jn})| (x - x_{jn}) \leq |p_{n}(x)|, \qquad x \in [x_{jn}, \bar{x}_{jn}].$$
(2.12)

Using Lemma 2.4(i), (ii) and Lemma 2.1, the inequality (2.11) means

$$cna_n^{-3/2}(x-x_{jn}) \leq |p_n(x)| \ W_Q(x), \qquad x \in [x_{jn}, \bar{x}_{jn}].$$
 (2.13)

If (2.12) holds, then by Lemma 2.1 and [6, Corollary 1.3] we also obtain (2.13). Hence if $x_{jn} + \varepsilon a_n/n \le x \le \bar{x}_{jn}$, then for a constant $c(\varepsilon)$

$$0 < c(\varepsilon) \ a_n^{-1/2} \le |p_n(x)| \ W_Q(x).$$
(2.14)

On the other hand, from [6, Corollary 1.4]

$$|p_n(x)| W_{\mathcal{Q}}(x) \leq c a_n^{-1/2}, \qquad |x| \leq \delta a_n,$$

that is, with (2.14) we have for $x \in [x_{in} + \varepsilon a_n/n, \bar{x}_{in}]$

$$|p_n(x)| W_Q(x) \sim a_n^{-1/2}.$$
 (2.15)

Similarly, for $x \in [\bar{x}_{jn}, x_{j-1,n} - \varepsilon a_n/n]$ we also have (2.15). Therefore, we obtain (2.10).

3. PROOF OF THEOREM

Now, we shall prove the theorem. The proof is along the same lines as Nevai's.

Proof of Theorem. We consider the space $C_0(-2, -1)$ which consists of continuous functions on \mathbb{R} with support in [-2, -1]. By our assumption, (1.2) is satisfied for $f \in C_0(-2, -1)$. Hence for the linear functional $L_n(f)$ on $C_0(-2, -1)$ we can apply the uniform boundedness theorem (cf. Theorem 10.19 of [11, p. 182]), and so for $f \in C_0(-2, -1)$ we have

$$\int_{-\infty}^{\infty} |L_n(f;x)|^p W(x) \, dx \le c \, \max_{-2 \le x \le -1} |f(x)|^p.$$
(3.1)

Let $\{p_n(x)\}\$ be the orthonormal polynomials with respect to the weight $W_Q^2(x)$, and for each n = 1, 2, 3, ... let us consider a function $g_n \in C_0$ (-2, -1) such that

$$\max_{-2 \le x \le -1} |g_n(x)| = 1, \quad g_n(x_{kn}) = \text{sign } p'_n(x_{kn}), \qquad x_{kn} \in (-2, -1).$$

Then we see

$$L_n(g_n; x) = p_n(x) \sum_{-2 \leq x_{kn} \leq -1} |p'_n(x_{kn})|^{-1} (x - x_{kn})^{-1}.$$

By [6, Corollary 1.3]

$$|p'_n(x_{kn})|^{-1} \sim n^{-1} a_n^{3/2}, \qquad -2 \leq x_{kn} \leq -1,$$

and Lemma 2.4(iii)

Num.
$$[\{k; x_{kn} \in [-2, -1]\}] \sim n/a_n,$$

where Num. [S] denotes the number of elements of the set S. Thus for x > 0

$$|L_n(g_n; x)| \ge c(1+x)^{-1} |p_n(x)| n^{-1} a_n^{3/2} n a_n^{-1}$$
$$= c a_n^{1/2} (1+x)^{-1} |p_n(x)|.$$
(3.2)

From (3.1) and (3.2),

$$A = \limsup_{n \to \infty} \int_0^\infty |a_n^{1/2} p_n(x)/(1+x)|^p W(x) dx$$

$$\leq c \limsup_{n \to \infty} \int_0^\infty |L_n(g_n; x)|^p W(x) dx$$

$$\leq c \max_{-2 \leq x \leq -1} |g_n(x)|^p$$

$$= c < \infty.$$
 (3.3)

Let us define

$$I_{jn} = I_{jn}(\varepsilon) = [x_{jn} + \varepsilon a_n/n, x_{j-1,n} - \varepsilon a_n/n],$$

$$\bar{I}_{jn} = \bar{I}_{jn}(\varepsilon) = [x_{j-1,n} - \varepsilon a_n/n, x_{j-1,n} + \varepsilon a_n/n], \qquad j = 2, 3, 4, \dots.$$

Let $0 < \delta < 1$, then, from (2.14),

$$|p_n(x)| W_Q(x) \ge ca_n^{-1/2}, \qquad x \in I_{jn} \cap [0, \delta a_n],$$

where c is independent of n. Thus by (3.3)

$$c\sum_{j=2}^{n} \int_{I_{jn} \cap [0, \,\delta a_{n}]} |W_{\mathcal{Q}}^{-1}(x)/(1+x)|^{p} W(x) \, dx \leq A.$$
(3.4)

Therefore, we also see that by exchanging n for n + 1 in (3.4) we have

$$c\sum_{j=2}^{n+1} \int_{I_{j,n+1} \cap [0,\,\delta a_{n+1}]} |W_{\mathcal{Q}}^{-1}(x)/(1+x)|^p W(x) \, dx \leq A.$$
(3.5)

Here, we can show that for a certain $\varepsilon > 0$,

$$\bar{I}_{jn}(\varepsilon) \cap [0, \delta a_n] \subset I_{j, n+1}(\varepsilon) \cap [0, \delta a_{n+1}].$$
(3.6)

In fact, by (2.6) for $|x_{j,n+1}| \leq \delta a_n$ there exists c > 0 such that

$$\begin{aligned} ca_n^{-1/2} &\leq |p_n(x_{j,n+1}) \ W_Q(x_{j,n+1})| \\ &= |\{p_n(x_{j,n+1})/(x_{j,n+1} - x_{jn})\} \ W_Q(x_{j,n+1})| \ (x_{j,n+1} - x_{jn}) \\ &\leq c \ |p'_n(\xi) \ W_Q(\xi)| \ (x_{j,n+1} - x_{jn}) \\ &\leq cna_n^{-3/2}(x_{j,n+1} - x_{jn}) \end{aligned}$$

(see Lemma 2.3). Thus we see

$$ca_n/n \leq (x_{j,n+1} - x_{jn}),$$

consequently, we have

$$x_{j,n+1} - x_{jn}, x_{j-1,n} - x_{j,n+1} \sim a_n/n.$$

This means (3.6). Hence by (3.5) and (3.6)

$$\sum_{j=2}^{n} \int_{\bar{I}_{jn} \cap [0, \, \delta a_{n}]} |W_{Q}^{-1}(x)/(1+x)|^{p} W(x) \, dx$$

$$\leqslant c \sum_{j=2}^{n+1} \int_{I_{j,n+1} \cap [0, \, \delta a_{n+1}]} |W_{Q}^{-1}(x)/(1+x)|^{p} W(x) \, dx \leqslant A. \quad (3.7)$$

Using (3.4) and (3.7), we conclude

$$\int_{0}^{\delta a_{n}} |W_{Q}^{-1}(x)/(1+x)|^{p} W(x) dx \leq cA,$$

where c is independent of n. Therefore

$$\int_{0}^{\infty} |W_{Q}^{-1}(x)/(1+x)|^{p} W(x) dx \leq cA.$$
(3.8)

Similarly, we have

$$\int_{-\infty}^{0} |W_{Q}^{-1}(x)/(1+|x|)|^{p} W(x) \, dx \leq cA.$$
(3.9)

Consequently, by (3.8) and (3.9) we have (1.3), that is, the theorem follows.

ACKNOWLEDGMENT

The author is very indebted to professor D. S. Lubinsky for his useful suggestions.

REFERENCES

- W. C. Bauldry, Estimates of Christoffel functions of generalized Freud-type weights, J. Approx. Theory 46 (1986), 217–229.
- S. S. Bonan and D. S. Clark, Estimates of the Hermite and the Freud polynomials, J. Approx. Theory 63 (1990), 210–224.
- 3. G. Freud, On Markov-Bernstein-type inequalities and their applications, J. Approx. Theory 19 (1977), 22-37.
- A. Knopfmacher and D. S. Lubinsky, Mean convergence of Lagrange interpolation for Freud's weights with application to product integration rules, J. Comput. Appl. Math. 17 (1987), 79–103.
- A. Knopfmacher, Pointwise convergence of Lagrange interpolation based at the zeros of orthonormal polynomials with respect to weights on the whole real line, J. Approx. Theory 51 (1987), 231–253.
- A. L. Levin and D. S. Lubinsky, Christoffel functions, orthogonal polynomials, and Nevai's conjecture for Freud weights, *Constr. Approx.* 8 (1992), 463–535.
- 7. G. G. Lorentz, "Approximation of Functions," Holt, Rinehart, and Winston, New York, 1966.
- 8. D. S. Lubinsky, A weighted polynomial inequality, Proc. Amer. Math. Soc. 92 (1984), 263–267.
- D. S. Lubinsky and D. M. Matjila, Necessary and sufficient conditions for mean convergence of Lagrange interpolation for Freud weights, *SIAM J. Math. Anal.* 26, No. 1 (1995), 238–262.
- H. N. Mhaskar, Bounds for certain Freud-type orthogonal polynomials, J. Approx. Theory 63 (1990), 238–254.
- 11. P. Nevai, Orthogonal polynomials, Mem. Amer. Math. Soc. 18 (1979), 213.
- 12. P. Nevai, Mean convergence of Lagrange interpolation, II, J. Approx. Theory 30 (1980), 263–276.
- P. Nevai, Géza Freud, orthogonal polynomials, and Christoffel functions: A case study, J. Approx. Theory 48 (1986), 3–167.