Lagrange Interpolation Based at the Zeros of Orthonormal Polynomials with Freud Weights

R. Sakai
Asuke Senior High School, Kawahara 5, Yagami, Asuke-cho, Higashikamo, Aichi 444-24, Japan
Communicated by D. S. Lubinsky

Received June 10, 1996; accepted December 3, 1996

Let $L_{n}(f ; x)$ be the Lagrange interpolation polynomial to f at the zeros of the orthonormal polynomial of degree n for the Freud weight W_{Q} with an exponent Q. We have the following. Let $W(\geqslant 0) \in L_{1}(\mathbb{R})$ and $0<p<\infty$ be given. If for every continuous function f vanishing outside a finite interval

$$
\lim _{n \rightarrow \infty} \int_{-\infty}^{\infty}\left[\left|f(x)-L_{n}(f ; x)\right|^{p} W(x)\right] d x=0
$$

holds, then we have

$$
\int_{-\infty}^{\infty}\left[W_{Q}^{-1}(x) /(1+|x|)\right]^{p} W(x) d x<\infty .
$$

(C) 1998 Academic Press

1. INTRODUCTION

Let Q be an even, continuous, and real-valued function defined on the real line $\mathbb{R}=(-\infty, \infty)$, and let $Q^{\prime} \in C(\mathbb{R}), Q^{\prime}(x)>0$ on $(0, \infty)$, and $Q^{\prime \prime}$ be continuous on $(0, \infty)$. Furthermore, we assume that for certain constants $1<A \leqslant B$,

$$
A \leqslant\left\{(d / d x)\left(x Q^{\prime}(x)\right)\right\} / Q^{\prime}(x) \leqslant B, \quad x \in(0, \infty) .
$$

We call the function $Q(x)$ a Freud exponent, and then we consider what is called a Freud weight

$$
\begin{align*}
W_{Q}^{2}(x)= & \exp \{-Q(x)\} . \tag{1.1}\\
& 116
\end{align*}
$$

We note that if $\alpha>1$, then $W_{\alpha}^{2}(x)=\exp \left(-|x|^{\alpha}\right)$ is a Freud weight. The Mhaskar-Rahmanov-Saff number a_{u} is defined as the positive root of the equation

$$
u=(2 / \pi) \int_{0}^{1} a_{u} t Q^{\prime}\left(a_{u} t\right)\left(1-t^{2}\right)^{-(1 / 2)} d t, \quad u>0 .
$$

The number a_{u} plays an important role in the study of the approximation theory. Let Π_{n} denote the class of real polynomials of degree at most n, and let $\left\{p_{n}(x)\right\}=\left\{p_{n}\left(W_{Q}^{2} ; x\right)\right\}, p_{n} \in \Pi_{n}$ be the sequence of orthonormal polynomials with respect to W_{Q}^{2}, that is,

$$
\int_{-\infty}^{\infty} p_{m}(x) p_{n}(x) W_{Q}^{2}(x) d x=\delta_{m n}= \begin{cases}0, & m \neq n, \\ 1, & m=n .\end{cases}
$$

We denote the zeros of $P_{n}(x)$ by $x_{k n}, k=1,2, \ldots, n$, where

$$
x_{n n}<x_{n-1, n}<\cdots<x_{1 n} .
$$

Then, for a given $f \in C(\mathbb{R})$ the Lagrange interpolation polynomial $L_{n}(f)$ based at the zeros $\left\{x_{k n}\right\}$ of $P_{n}(x)$ is defined to be a unique polynomial in Π_{n-1} such that

$$
L_{n}\left(f ; x_{k n}\right)=f\left(x_{k n}\right), \quad k=1,2, \ldots, n .
$$

Nevai obtained the following.

Nevai's Theorem ([12]). Let $L_{n}(f ; x)$ denote the Lagrange interpolation polynomial at the zeros of $P_{n}\left(W_{2}^{2} ; x\right)$ for the weight $W_{2}^{2}(x)=\exp \left(-x^{2}\right)$. Let $W(\geqslant 0) \in L_{1}(\mathbb{R})$ and $0<p<\infty$ be given. Suppose that for every continuous function f vanishing outside a finite interval,

$$
\lim _{n \rightarrow \infty} \int_{-\infty}^{\infty}\left|f(x)-L_{n}(f ; x)\right|^{p} W(x) d x=0
$$

Then

$$
\int_{-\infty}^{\infty}\left[\exp \left(x^{2} / 2\right) /(1+|x|)\right]^{p} W(x) d x<\infty .
$$

In this paper we extend Nevai's Theorem for the Freud weight (1.1).

Theorem. Let $W(\geqslant 0) \in L_{1}(\mathbb{R})$ and $0<p<\infty$ be given. If for every continuous function f vanishing outside a finite interval

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \int_{-\infty}^{\infty}\left[\left|f(x)-L_{n}(f ; x)\right|^{p} W(x)\right] d x=0 \tag{1.2}
\end{equation*}
$$

holds, then we have

$$
\begin{equation*}
\int_{-\infty}^{\infty}\left[W_{Q}^{-1}(x) /(1+|x|)\right]^{p} W(x) d x<\infty . \tag{1.3}
\end{equation*}
$$

If in the theorem we consider especially the case of $W(x)=W_{Q}^{p}(x)$ $(1+|x|)^{-\Delta p}, \Delta>1 / p-1$, then obviously we have (1.3). In this case, that is, $W(x)=W_{Q}^{p}(x)(1+|x|)^{-4 p}$, Lubinsky and Matjila have obtained a complete solution as follows.

Theorem of Lubinsky-Matjila ([9]). Let $1<p<\infty, \Delta \in \mathbb{R}, \alpha>0$, and $\hat{\alpha}=\min (1, \alpha)$. Then for

$$
\lim _{n \rightarrow \infty}\left\|\left\{f(x)-L_{n}(f ; x)\right\} W_{Q}(x)(1+|x|)^{-4}\right\|_{L_{p}(\mathbb{R})}=0
$$

to hold for every continuous function $f \in C(\mathbb{R})$ satisfying

$$
\lim _{n \rightarrow \infty}|f(x)| W_{Q}(x)(1+|x|)^{\alpha}=0
$$

if $p \leqslant 4$, it is necessary and sufficient that

$$
\Delta>-\hat{\alpha}+1 / p
$$

and if $p>4$ and $\alpha \neq 1$, it is necessary and sufficient that

$$
a_{n}^{1 / p-(\hat{\alpha}+\Delta)} n^{(1 / 6)(1-4 / p)}=O(1), \quad n \rightarrow \infty ;
$$

and if $p>4$ and $\alpha=1$, it is necessary and sufficient that

$$
a_{n}^{1 / p-(\alpha+4)} n^{(1 / 6)(1-4 / p)}=O(1 / \log n), \quad n \rightarrow \infty .
$$

Our theorem asserts that if for a certain $W(\geqslant 0) \in L_{1}(\mathbb{R})$,

$$
\int_{-\infty}^{\infty}\left[W_{Q}^{-1}(x) /(1+|x|)\right]^{p} W(x) d x=\infty
$$

holds, then for a continuous function f we see that $L_{n}(f)$ does not converge to f :

$$
\lim _{n \rightarrow \infty} \int_{-\infty}^{\infty}\left[\left|f(x)-L_{n}(f ; x)\right|^{p} W(x)\right] d x \neq 0
$$

2. FUNDAMENTAL LEMMAS

Throughout this paper c will denote a positive constant independent of n and x, and the letter c will denote a constant which may differ at each different occurrence, even in the chain of inequalities. Let $c(a, b, \ldots)$ mean a constant depending on a, b, \ldots. By $f(x) \sim g(x)$ we denote $c_{1} \leqslant f(x) / g(x)$ $\leqslant c_{2}$ for certain positive constants c_{1}, c_{2}, and for all relevant x.

Lemma 2.1. Let $|x| \leqslant c a_{n}$ for certain constants $c>0$. Then we have

$$
\begin{equation*}
W_{Q}(x) \sim W_{Q}\left(x^{\prime}\right) \quad \text { for } \quad\left|x-x^{\prime}\right| \leqslant \kappa a_{n} / n \tag{2.1}
\end{equation*}
$$

Proof. For $\left|x-x^{\prime}\right| \leqslant \kappa a_{n} / n\left(|x|,\left|x^{\prime}\right| \leqslant c a_{n}\right)$ we see

$$
\begin{aligned}
\left|Q(x)-Q\left(x^{\prime}\right)\right| & \leqslant\left|Q^{\prime}(\xi)\right| \kappa a_{n} / n \quad\left(x<\xi<x^{\prime}\right) \\
& \leqslant\left|Q^{\prime}\left(c a_{n}\right)\right| \kappa a_{n} / n \\
& \leqslant c(\kappa)
\end{aligned}
$$

by [6, Lemma 5.1(c)]. Consequently, we see

$$
\begin{aligned}
W_{Q}(x) / W_{Q}\left(x^{\prime}\right), W_{Q}\left(x^{\prime}\right) / W_{Q}(x) & \leqslant \exp \left\{\left|Q(x)-Q\left(x^{\prime}\right)\right|\right\} \\
& \leqslant \exp \{c(\kappa)\}
\end{aligned}
$$

that is, (2.1) follows.
Let $\left\{p_{n}(x)\right\}=\left\{p_{n}\left(W_{Q}^{2} ; x\right)\right\}$ be the orthonormal polynomials with respect to W_{Q}^{2}, and let $r_{n}=\gamma_{n-1} / \gamma_{n}$, where γ_{n} is the leading coefficient of $p_{n}(x)$, that is, $p_{n}(x)=\gamma_{n} x^{n}+\cdots$. The following lemma is useful for an estimate of values of $p_{n}^{\prime}(x)$.

Lemma 2.2 (cf. [2, Theorem 5], [10, Theorem 3.2]). We have an equation

$$
p_{n}^{\prime}(x)=A_{n}(x) p_{n-1}(x)-B_{n}(x) p_{n}(x)
$$

where

$$
\begin{aligned}
& A_{n}(x)=r_{n} \int_{-\infty}^{\infty} p_{n}^{2}(t) \bar{Q}(x, t) W_{Q}^{2}(t) d t \\
& B_{n}(x)=r_{n} \int_{-\infty}^{\infty} p_{n}(t) p_{n-1}(t) \bar{Q}(x, t) W_{Q}^{2}(t) d t
\end{aligned}
$$

and

$$
\bar{Q}(x, t)=\left\{Q^{\prime}(x)-Q^{\prime}(t)\right\} /(x-t) .
$$

Proof. We can write $p_{n}^{\prime}(x)$ in the Fourier expansion in terms of the reproducing kernel $K_{n}(x, t)$ as

$$
\begin{equation*}
p_{n}^{\prime}(x)=\int_{-\infty}^{\infty} p_{n}^{\prime}(t) K_{n}(x, t) W_{Q}^{2}(t) d t, \tag{2.2}
\end{equation*}
$$

where

$$
\begin{align*}
K_{n}(x, t) & =\sum_{k=0}^{n-1} p_{k}(x) p_{k}(t) \\
& =r_{n}\left\{p_{n}(x) p_{n-1}(t)-p_{n}(t) p_{n-1}(x)\right\} /(x-t) . \tag{2.3}
\end{align*}
$$

Since $\int_{-\infty}^{\infty} p_{n}(t)\left\{(d / d t) K_{n}(x, t)\right\} W_{Q}^{2}(t) d t=0$, by (2.2) and (2.3)

$$
\begin{aligned}
p_{n}^{\prime}(x)= & -\int_{-\infty}^{\infty} p_{n}(t) K_{n}(x, t)\left\{(d / d t) W_{Q}^{2}(t)\right\} d t \\
= & \int_{-\infty}^{\infty} p_{n}(t) K_{n}(x, t) Q^{\prime}(t) W_{Q}^{2}(t) d t \\
= & -r_{n} \int_{-\infty}^{\infty} p_{n}(t)\left\{p_{n}(x) p_{n-1}(t)-p_{n}(t) p_{n-1}(x)\right\} \\
& \times \bar{Q}(x, t) W_{Q}^{2}(t) d t \\
= & \left\{r_{n} \int_{-\infty}^{\infty} p_{n}^{2}(t) \bar{Q}(x, t) W_{Q}^{2}(t) d t\right\} p_{n-1}(x) \\
& -\left\{r_{n} \int_{-\infty}^{\infty} p_{n}(t) p_{n-1}(t) \bar{Q}(x, t) W_{Q}^{2}(t) d t\right\} p_{n}(x) \\
= & A_{n}(x) p_{n-1}(x)-B_{n}(x) p_{n}(x) .
\end{aligned}
$$

Lemma 2.3. Let $|x| \leqslant \delta a_{n}(0<\delta<1)$. Then for a certain constant $c>0$,

$$
\left|p_{n}^{\prime}(x)\right| W_{Q}(x) \leqslant c n a_{n}^{-3 / 2}
$$

holds.
Proof. Since by $[6,(12.21)]$ and $[6$, Theorem 12.3(b)] we have

$$
A_{n}(x) \sim n / r_{n} \sim n / a_{n} \quad\left(|x| \leqslant 2 a_{n}\right),
$$

we see that by Schwarz's inequality

$$
\begin{aligned}
\left|B_{n}(x)\right| \leqslant & {\left[r_{n} \int_{-\infty}^{\infty} p_{n}^{2}(t) \bar{Q}(x, t) W_{Q}^{2}(t) d t\right]^{1 / 2} } \\
& \times\left[r_{n} \int_{-\infty}^{\infty} p_{n-1}^{2}(t) \bar{Q}(x, t) W_{Q}^{2}(t) d t\right]^{1 / 2} \\
\leqslant & c n / a_{n} .
\end{aligned}
$$

On the other hand, by [6, Corollary 1.4],

$$
\left|p_{n}(x)\right| W_{Q}(x),\left|p_{n-1}(x)\right| W_{Q}(x) \leqslant c a_{n}^{-1 / 2} \quad\left(|x| \leqslant \delta a_{n}\right)
$$

Thus by Lemma 2.2 if $|x| \leqslant \delta a_{n}$, then

$$
\begin{aligned}
& \left|p_{n}^{\prime}(x)\right| W_{Q}(x) \\
& \quad \leqslant\left|A_{n}(x)\right|\left|p_{n-1}(x)\right| W_{Q}(x)+\left|B_{n}(x)\right|\left|p_{n}(x)\right| W_{Q}(x) \\
& \quad \leqslant c n a_{n}^{-3 / 2} .
\end{aligned}
$$

Lemma 2.4. Let $\left|x_{j n}\right|,\left|x_{j-1, n}\right| \leqslant \delta a_{n}(0<\delta<1)$: and let

$$
\begin{equation*}
\left|p_{n}\left(\bar{x}_{j n}\right)\right|=\max _{x_{j n} \leqslant x \leqslant x_{j-1, n}}\left|p_{n}(x)\right|, x_{j n}<\bar{x}_{j n}<x_{j-1, n} . \tag{2.4}
\end{equation*}
$$

Then we have

$$
\text { (i) }\left|p_{n}\left(\bar{x}_{j n}\right)\right| W_{Q}\left(\bar{x}_{j n}\right) \sim a_{n}^{-1 / 2},
$$

and

$$
\begin{equation*}
\text { (ii) }\left|\bar{x}_{j n}-x_{j n}\right|,\left|\bar{x}_{j n}-x_{j-1, n}\right| \sim a_{n} / n \text {, } \tag{2.5}
\end{equation*}
$$

that is,

$$
\text { (iii) } \quad x_{j-1, n}-x_{j n} \sim a_{n} / n
$$

Proof. (i) By [6, Corollary 1.3], for $x_{j n}<x_{j, n+1}<x_{j-1, n}$, where $\left|x_{j n}\right|$, $\left|x_{j-1, n}\right| \leqslant \delta a_{n}$, we see

$$
\begin{equation*}
\left|p_{n}\left(x_{j, n+1}\right)\right| W_{Q}\left(x_{j, n+1}\right) \sim a_{n}^{-1 / 2} . \tag{2.6}
\end{equation*}
$$

On the other hand, [6, Corollary 1.4] means

$$
\left|p_{n}(x)\right| W_{Q}(x) \leqslant c a_{n}^{-1 / 2} \quad\left(|x| \leqslant \delta a_{n}\right)
$$

Therefore we have (i).
(ii) From (i) we see

$$
\begin{align*}
c a_{n}^{-1 / 2} /\left(\bar{x}_{j n}-x_{j n}\right) & \leqslant\left|p_{n}\left(\bar{x}_{j n}\right)\right| W_{Q}\left(\bar{x}_{n j}\right) /\left(\bar{x}_{j n}-x_{j n}\right) \\
& =\left|p_{n}^{\prime}(\xi)\right| W_{Q}\left(\bar{x}_{j n}\right) \quad\left(x_{j n}<\xi<\bar{x}_{j n}\right) . \tag{2.7}
\end{align*}
$$

Since by [6, Corollary 1.2 (b)] we see

$$
\left|\bar{x}_{j n}-\xi\right| \leqslant \kappa a_{n} / n
$$

for some $\kappa>0$, Lemma 2.1 means $W_{Q}\left(\bar{x}_{j n}\right) \leqslant c W_{Q}(\xi)$. Thus from (2.7) and Lemma 2.3 we have

$$
c a_{n}^{-1 / 2} /\left(\bar{x}_{j n}-x_{j n}\right) \leqslant c\left|p_{n}^{\prime}(\xi)\right| W_{Q}(\xi) \leqslant c n a_{n}^{-3 / 2}
$$

that is,

$$
c a_{n} / n \leqslant\left|\bar{x}_{j n}-x_{j n}\right| .
$$

Consequently, we obtain $\left|\bar{x}_{j n}-x_{j n}\right| \sim a_{n} / n$, and similarly $\left|\bar{x}_{j n}-x_{j-1, n}\right| \sim$ a_{n} / n.
(iii) It is trivial from (2.5).

The following lemma is important itself. It gives certain exact values of $p_{n}(x)$ in each interval

$$
\begin{equation*}
I_{j n}(\delta, \varepsilon)=\left[x_{j n}+\varepsilon a_{n} / n, x_{j-1, n}-\varepsilon a_{n}\right] \cap\left[-\delta a_{n}, \delta a_{n}\right] . \tag{2.8}
\end{equation*}
$$

Lemma 2.5. Let $I_{j n}(\delta, \varepsilon)$ be defined in (2.8). For each $0<\delta<1$ there exists $\varepsilon>0$ such that

$$
\begin{equation*}
x_{j n}+\varepsilon a_{n} / n<x_{j-1, n}-\varepsilon a_{n} / n \tag{2.9}
\end{equation*}
$$

whenever $\left|x_{j n}\right|,\left|x_{j-1, n}\right| \leqslant \delta a_{n}$. Then

$$
\begin{equation*}
\left|p_{n}(x)\right| W_{Q}(x) \sim a_{n}^{-1 / 2}, \quad x \in I_{j n}(\delta, \varepsilon), \tag{2.10}
\end{equation*}
$$

holds uniformly with respect to all $I_{j n}(\delta, \varepsilon) \neq \phi$.

Remark. We can also give certain exact values of $p_{n}^{\prime}(x)$ in each interval

$$
\bar{I}_{j n}(\delta, \varepsilon)=\left[x_{j n}-\varepsilon a_{n} / n, x_{j n}+\varepsilon a_{n} / n\right] \cap\left[-\delta a_{n}, \delta a_{n}\right] .
$$

For each $0<\delta<1$ there exists $\varepsilon>0$ such that

$$
\left|p_{n}^{\prime}(x)\right| W_{Q}(x) \sim n a_{n}^{-3 / 2}, \quad x \in \bar{I}_{j n}(\delta, \varepsilon),
$$

holds uniformly with respect to all $\bar{I}_{j n}(\delta, \varepsilon) \neq \phi$.
Proof of Lemma 2.5. (i) It follows from Lemma 2.4(iii) that there exists $\varepsilon>0$ such that (2.9) holds for every j satisfying $\left|x_{j n}\right|,\left|x_{j-1, n}\right| \leqslant \delta a_{n}$. Let $I_{j n}(\delta, \varepsilon) \neq \phi$, then $\bar{x}_{j n} \in\left[x_{j n}, x_{j-1, n}\right]$ is defined in (2.4). In each interval $\left(x_{j n}, \bar{x}_{j n}\right)$ or $\left(\bar{x}_{j n}, x_{j-1, n}\right)$ the polynomial $p_{n}(x)$ has at most one inflection point. We shall first consider $p_{n}(x)$ in $\left[x_{j n}, \bar{x}_{j n}\right]$. Then we have one of two following cases.
(a) $\left|p_{n}(x)\right|$ is concave on $\left[x_{j n}, \bar{x}_{j n}\right]$.
(b) There exists $x_{j n}<x_{j n}^{\prime}<\bar{x}_{j n}$ such that $\left|p_{n}(x)\right|$ is convex on $\left[x_{j n}, x_{j n}^{\prime}\right]$, and concave on $\left[x_{j n}^{\prime}, \bar{x}_{j n}\right]$.

Let us now define the line

$$
y=\left\{\left|p_{n}\left(\bar{x}_{j n}\right)\right| /\left(\bar{x}_{j n}-x_{j n}\right)\right\}\left(x-x_{j n}\right) .
$$

Then for the case of (a) we see

$$
\begin{equation*}
\left\{\left|p_{n}\left(\bar{x}_{j n}\right)\right| /\left(\bar{x}_{j n}-x_{j n}\right)\right\}\left(x-x_{j n}\right) \leqslant\left|p_{n}(x)\right|, \quad x \in\left[x_{j n}, \bar{x}_{j n}\right] . \tag{2.11}
\end{equation*}
$$

We shall treat the case of (b). If (2.11) is not correct, then we consider the line

$$
y=\left|p_{n}^{\prime}\left(x_{j n}\right)\right|\left(x-x_{j n}\right),
$$

and so we see

$$
\begin{equation*}
\left|p_{n}^{\prime}\left(x_{j n}\right)\right|\left(x-x_{j n}\right) \leqslant\left|p_{n}(x)\right|, \quad x \in\left[x_{j n}, \bar{x}_{j n}\right] . \tag{2.12}
\end{equation*}
$$

Using Lemma 2.4(i), (ii) and Lemma 2.1, the inequality (2.11) means

$$
\begin{equation*}
\operatorname{cna}_{n}^{-3 / 2}\left(x-x_{j n}\right) \leqslant\left|p_{n}(x)\right| W_{Q}(x), \quad x \in\left[x_{j n}, \bar{x}_{j n}\right] . \tag{2.13}
\end{equation*}
$$

If (2.12) holds, then by Lemma 2.1 and [6, Corollary 1.3] we also obtain (2.13). Hence if $x_{j n}+\varepsilon a_{n} / n \leqslant x \leqslant \bar{x}_{j n}$, then for a constant $c(\varepsilon)$

$$
\begin{equation*}
0<c(\varepsilon) a_{n}^{-1 / 2} \leqslant\left|p_{n}(x)\right| W_{Q}(x) . \tag{2.14}
\end{equation*}
$$

On the other hand, from [6, Corollary 1.4]

$$
\left|p_{n}(x)\right| W_{Q}(x) \leqslant c a_{n}^{-1 / 2}, \quad|x| \leqslant \delta a_{n}
$$

that is, with (2.14) we have for $x \in\left[x_{j n}+\varepsilon a_{n} / n, \bar{x}_{j n}\right]$

$$
\begin{equation*}
\left|p_{n}(x)\right| W_{Q}(x) \sim a_{n}^{-1 / 2} \tag{2.15}
\end{equation*}
$$

Similarly, for $x \in\left[\bar{x}_{j n}, x_{j-1, n}-\varepsilon a_{n} / n\right]$ we also have (2.15). Therefore, we obtain (2.10).

3. PROOF OF THEOREM

Now, we shall prove the theorem. The proof is along the same lines as Nevai's.

Proof of Theorem. We consider the space $C_{0}(-2,-1)$ which consists of continuous functions on \mathbb{R} with support in $[-2,-1]$. By our assumption, (1.2) is satisfied for $f \in C_{0}(-2,-1)$. Hence for the linear functional $L_{n}(f)$ on $C_{0}(-2,-1)$ we can apply the uniform boundedness theorem (cf. Theorem 10.19 of [11, p. 182]), and so for $f \in C_{0}(-2,-1)$ we have

$$
\begin{equation*}
\int_{-\infty}^{\infty}\left|L_{n}(f ; x)\right|^{p} W(x) d x \leqslant c \max _{-2 \leqslant x \leqslant-1}|f(x)|^{p} . \tag{3.1}
\end{equation*}
$$

Let $\left\{p_{n}(x)\right\}$ be the orthonormal polynomials with respect to the weight $W_{Q}^{2}(x)$, and for each $n=1,2,3, \ldots$ let us consider a function $g_{n} \in C_{0}$ $(-2,-1)$ such that

$$
\max _{-2 \leqslant x \leqslant-1}\left|g_{n}(x)\right|=1, \quad g_{n}\left(x_{k n}\right)=\operatorname{sign} p_{n}^{\prime}\left(x_{k n}\right), \quad x_{k n} \in(-2,-1) .
$$

Then we see

$$
L_{n}\left(g_{n} ; x\right)=p_{n}(x) \sum_{-2 \leqslant x_{k n} \leqslant-1}\left|p_{n}^{\prime}\left(x_{k n}\right)\right|^{-1}\left(x-x_{k n}\right)^{-1}
$$

By [6, Corollary 1.3]

$$
\left|p_{n}^{\prime}\left(x_{k n}\right)\right|^{-1} \sim n^{-1} a_{n}^{3 / 2}, \quad-2 \leqslant x_{k n} \leqslant-1,
$$

and Lemma 2.4(iii)

$$
\operatorname{Num} .\left[\left\{k ; x_{k n} \in[-2,-1]\right\}\right] \sim n / a_{n},
$$

where Num. [S] denotes the number of elements of the set S. Thus for $x>0$

$$
\begin{align*}
\left|L_{n}\left(g_{n} ; x\right)\right| & \geqslant c(1+x)^{-1}\left|p_{n}(x)\right| n^{-1} a_{n}^{3 / 2} n a_{n}^{-1} \\
& =c a_{n}^{1 / 2}(1+x)^{-1}\left|p_{n}(x)\right| \tag{3.2}
\end{align*}
$$

From (3.1) and (3.2),

$$
\begin{align*}
A & =\limsup _{n \rightarrow \infty} \int_{0}^{\infty}\left|a_{n}^{1 / 2} p_{n}(x) /(1+x)\right|^{p} W(x) d x \\
& \leqslant c \limsup _{n \rightarrow \infty} \int_{0}^{\infty}\left|L_{n}\left(g_{n} ; x\right)\right|^{p} W(x) d x \\
& \leqslant c \max _{-2 \leqslant x \leqslant-1}\left|g_{n}(x)\right|^{p} \\
& =c<\infty \tag{3.3}
\end{align*}
$$

Let us define

$$
\begin{aligned}
I_{j n} & =I_{j n}(\varepsilon) \\
\bar{I}_{j n} & =\bar{I}_{j n}(\varepsilon)=\left[x_{j n}+\varepsilon a_{n} / n, x_{j-1, n}-\varepsilon a_{n} / n\right], \\
& \left.\varepsilon a_{n} / n, x_{j-1, n}+\varepsilon a_{n} / n\right], \quad j=2,3,4, \ldots
\end{aligned}
$$

Let $0<\delta<1$, then, from (2.14),

$$
\left|p_{n}(x)\right| W_{Q}(x) \geqslant c a_{n}^{-1 / 2}, \quad x \in I_{j n} \cap\left[0, \delta a_{n}\right],
$$

where c is independent of n. Thus by (3.3)

$$
\begin{equation*}
c \sum_{j=2}^{n} \int_{I_{j_{j n} \cap\left[0, \delta a_{n}\right]}\left|W_{Q}^{-1}(x) /(1+x)\right|^{p} W(x) d x \leqslant A . ~ . ~ . ~} . \tag{3.4}
\end{equation*}
$$

Therefore, we also see that by exchanging n for $n+1$ in (3.4) we have

$$
\begin{equation*}
c \sum_{j=2}^{n+1} \int_{I_{j, n+1} \cap\left[0, \delta a_{n+1}\right]}\left|W_{Q}^{-1}(x) /(1+x)\right|^{p} W(x) d x \leqslant A . \tag{3.5}
\end{equation*}
$$

Here, we can show that for a certain $\varepsilon>0$,

$$
\begin{equation*}
\bar{I}_{j n}(\varepsilon) \cap\left[0, \delta a_{n}\right] \subset I_{j, n+1}(\varepsilon) \cap\left[0, \delta a_{n+1}\right] . \tag{3.6}
\end{equation*}
$$

In fact, by (2.6) for $\left|x_{j, n+1}\right| \leqslant \delta a_{n}$ there exists $c>0$ such that

$$
\begin{aligned}
c a_{n}^{-1 / 2} & \leqslant\left|p_{n}\left(x_{j, n+1}\right) W_{Q}\left(x_{j, n+1}\right)\right| \\
& =\left|\left\{p_{n}\left(x_{j, n+1}\right) /\left(x_{j, n+1}-x_{j n}\right)\right\} W_{Q}\left(x_{j, n+1}\right)\right|\left(x_{j, n+1}-x_{j n}\right) \\
& \leqslant c\left|p_{n}^{\prime}(\xi) W_{Q}(\xi)\right|\left(x_{j, n+1}-x_{j n}\right) \\
& \leqslant c n a_{n}^{-3 / 2}\left(x_{j, n+1}-x_{j n}\right)
\end{aligned}
$$

(see Lemma 2.3). Thus we see

$$
c a_{n} / n \leqslant\left(x_{j, n+1}-x_{j n}\right),
$$

consequently, we have

$$
x_{j, n+1}-x_{j n}, x_{j-1, n}-x_{j, n+1} \sim a_{n} / n .
$$

This means (3.6). Hence by (3.5) and (3.6)

$$
\begin{align*}
& \sum_{j=2}^{n} \int_{\tilde{I}_{j_{n}} \cap\left[0, \delta a_{n}\right]}\left|W_{Q}^{-1}(x) /(1+x)\right|^{p} W(x) d x \\
& \quad \leqslant c \sum_{j=2}^{n+1} \int_{I_{j, n+1} \cap\left[0, \delta a_{n+1}\right]}\left|W_{Q}^{-1}(x) /(1+x)\right|^{p} W(x) d x \leqslant A \tag{3.7}
\end{align*}
$$

Using (3.4) and (3.7), we conclude

$$
\int_{0}^{\delta a_{n}}\left|W_{Q}^{-1}(x) /(1+x)\right|^{p} W(x) d x \leqslant c A
$$

where c is independent of n. Therefore

$$
\begin{equation*}
\int_{0}^{\infty}\left|W_{Q}^{-1}(x) /(1+x)\right|^{p} W(x) d x \leqslant c A . \tag{3.8}
\end{equation*}
$$

Similarly, we have

$$
\begin{equation*}
\int_{-\infty}^{0}\left|W_{Q}^{-1}(x) /(1+|x|)\right|^{p} W(x) d x \leqslant c A \tag{3.9}
\end{equation*}
$$

Consequently, by (3.8) and (3.9) we have (1.3), that is, the theorem follows.

ACKNOWLEDGMENT

The author is very indebted to professor D. S. Lubinsky for his useful suggestions.

REFERENCES

1. W. C. Bauldry, Estimates of Christoffel functions of generalized Freud-type weights, J. Approx. Theory 46 (1986), 217-229.
2. S. S. Bonan and D. S. Clark, Estimates of the Hermite and the Freud polynomials, J. Approx. Theory 63 (1990), 210-224.
3. G. Freud, On Markov-Bernstein-type inequalities and their applications, J. Approx. Theory 19 (1977), 22-37.
4. A. Knopfmacher and D. S. Lubinsky, Mean convergence of Lagrange interpolation for Freud's weights with application to product integration rules, J. Comput. Appl. Math. 17 (1987), 79-103.
5. A. Knopfmacher, Pointwise convergence of Lagrange interpolation based at the zeros of orthonormal polynomials with respect to weights on the whole real line, J. Approx. Theory 51 (1987), 231-253.
6. A. L. Levin and D. S. Lubinsky, Christoffel functions, orthogonal polynomials, and Nevai's conjecture for Freud weights, Constr. Approx. 8 (1992), 463-535.
7. G. G. Lorentz, "Approximation of Functions," Holt, Rinehart, and Winston, New York, 1966.
8. D. S. Lubinsky, A weighted polynomial inequality, Proc. Amer. Math. Soc. 92 (1984), 263-267.
9. D. S. Lubinsky and D. M. Matjila, Necessary and sufficient conditions for mean convergence of Lagrange interpolation for Freud weights, SIAM J. Math. Anal. 26, No. 1 (1995), 238-262.
10. H. N. Mhaskar, Bounds for certain Freud-type orthogonal polynomials, J. Approx. Theory 63 (1990), 238-254.
11. P. Nevai, Orthogonal polynomials, Mem. Amer. Math. Soc. 18 (1979), 213.
12. P. Nevai, Mean convergence of Lagrange interpolation, II, J. Approx. Theory $\mathbf{3 0}$ (1980), 263-276.
13. P. Nevai, Géza Freud, orthogonal polynomials, and Christoffel functions: A case study, J. Approx. Theory 48 (1986), 3-167.
