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Let Ln( f ; x) be the Lagrange interpolation polynomial to f at the zeros of the
orthonormal polynomial of degree n for the Freud weight WQ with an exponent Q.
We have the following. Let W(�0) # L1(R) and 0<p<� be given. If for every
continuous function f vanishing outside a finite interval

lim
n � � |

�

&�
[| f (x)&Ln( f ; x)| p W(x)] dx=0

holds, then we have

|
�

&�
[W&1

Q (x)�(1+|x| )] p W(x) dx<�.

� 1998 Academic Press

1. INTRODUCTION

Let Q be an even, continuous, and real-valued function defined on the
real line R=(&�, �), and let Q$ # C(R), Q$(x)>0 on (0, �), and Q" be
continuous on (0, �). Furthermore, we assume that for certain constants
1<A�B,

A�[(d�dx)(xQ$(x))]�Q$(x)�B, x # (0, �).

We call the function Q(x) a Freud exponent, and then we consider what
is called a Freud weight

W 2
Q(x)=exp[&Q(x)]. (1.1)
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We note that if :>1, then W 2
:(x)=exp(&|x| :) is a Freud weight. The

Mhaskar�Rahmanov�Saff number au is defined as the positive root of the
equation

u=(2�?) |
1

0
autQ$(aut)(1&t2)&(1�2) dt, u>0.

The number au plays an important role in the study of the approximation
theory. Let 6n denote the class of real polynomials of degree at most n, and
let [ pn(x)]=[ pn(W 2

Q ; x)], pn # 6n be the sequence of orthonormal poly-
nomials with respect to W 2

Q , that is,

|
�

&�
pm(x) pn(x) W 2

Q(x) dx=$mn={0, m{n,
1, m=n.

We denote the zeros of Pn(x) by xkn , k=1, 2, ..., n, where

xnn<xn&1, n< } } } <x1n .

Then, for a given f # C(R) the Lagrange interpolation polynomial Ln( f )
based at the zeros [xkn] of Pn(x) is defined to be a unique polynomial in
6n&1 such that

Ln( f ; xkn)= f (xkn), k=1, 2, ..., n.

Nevai obtained the following.

Nevai's Theorem ([12]). Let Ln( f ; x) denote the Lagrange interpolation
polynomial at the zeros of Pn(W 2

2 ; x) for the weight W 2
2(x)=exp(&x2). Let

W(�0) # L1(R) and 0<p<� be given. Suppose that for every continuous
function f vanishing outside a finite interval,

lim
n � � |

�

&�
| f (x)&Ln( f ; x)| p W(x) dx=0.

Then

|
�

&�
[exp(x2�2)�(1+|x| )] p W(x) dx<�.

In this paper we extend Nevai's Theorem for the Freud weight (1.1).
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Theorem. Let W(�0) # L1(R) and 0<p<� be given. If for every
continuous function f vanishing outside a finite interval

lim
n � � |

�

&�
[| f (x)&Ln( f ; x)| p W(x)] dx=0 (1.2)

holds, then we have

|
�

&�
[W&1

Q (x)�(1+|x| )] p W(x) dx<�. (1.3)

If in the theorem we consider especially the case of W(x)=W p
Q(x)

(1+|x| )&2p, 2>1�p&1, then obviously we have (1.3). In this case, that is,
W(x)=W p

Q(x)(1+|x| )&2p, Lubinsky and Matjila have obtained a
complete solution as follows.

Theorem of Lubinsky�Matjila ([9]). Let 1<p<�, 2 # R, :>0, and
:̂=min(1, :). Then for

lim
n � �

&[ f (x)&Ln( f ; x)] WQ(x)(1+|x| )&2&Lp(R)=0

to hold for every continuous function f # C(R) satisfying

lim
n � �

| f (x)| WQ(x)(1+|x| ):=0,

if p�4, it is necessary and sufficient that

2> &:̂+1�p;

and if p>4 and :{1, it is necessary and sufficient that

a1�p&(:̂+2)
n n(1�6)(1&4�p)=O(1), n � �;

and if p>4 and :=1, it is necessary and sufficient that

a1�p&(:̂+2)
n n(1�6)(1&4�p)=O(1� log n), n � �.

Our theorem asserts that if for a certain W(�0) # L1(R),

|
�

&�
[W&1

Q (x)�(1+|x| )] p W(x) dx=�
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holds, then for a continuous function f we see that Ln( f ) does not converge
to f :

lim
n � � |

�

&�
[| f (x)&Ln( f ; x)| p W(x)] dx{0.

2. FUNDAMENTAL LEMMAS

Throughout this paper c will denote a positive constant independent of
n and x, and the letter c will denote a constant which may differ at each
different occurrence, even in the chain of inequalities. Let c(a, b, ...) mean
a constant depending on a, b, ... . By f (x)tg(x) we denote c1� f (x)�g(x)
�c2 for certain positive constants c1 , c2 , and for all relevant x.

Lemma 2.1. Let |x|�can for certain constants c>0. Then we have

WQ(x)tWQ(x$) for |x&x$|�}an�n. (2.1)

Proof. For |x&x$|�}an�n ( |x|, |x$|�can) we see

|Q(x)&Q(x$)|�|Q$(!)| }an�n (x<!<x$)

�|Q$(can)| }an �n

�c(})

by [6, Lemma 5.1(c)]. Consequently, we see

WQ(x)�WQ(x$), WQ(x$)�WQ(x)�exp [ |Q(x)&Q(x$)|]

�exp [c(})],

that is, (2.1) follows. K

Let [ pn(x)]=[ pn(W 2
Q ; x)] be the orthonormal polynomials with respect

to W 2
Q , and let rn=#n&1 �#n , where #n is the leading coefficient of pn(x),

that is, pn(x)=#nxn+ } } } . The following lemma is useful for an estimate of
values of p$n(x).

Lemma 2.2 (cf. [2, Theorem 5], [10, Theorem 3.2]). We have an equa-
tion

p$n(x)=An(x) pn&1(x)&Bn(x) pn(x),
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where

An(x)=rn |
�

&�
p2

n(t) Q� (x, t) W 2
Q(t) dt,

Bn(x)=rn |
�

&�
pn(t) pn&1(t) Q� (x, t) W 2

Q(t) dt,

and

Q� (x, t)=[Q$(x)&Q$(t)]�(x&t).

Proof. We can write p$n(x) in the Fourier expansion in terms of the
reproducing kernel Kn(x, t) as

p$n(x)=|
�

&�
p$n(t) Kn(x, t) W 2

Q(t) dt, (2.2)

where

Kn(x, t)= :
n&1

k=0

pk(x) pk(t)

=rn[ pn(x) pn&1(t)& pn(t) pn&1(x)]�(x&t). (2.3)

Since ��
&� pn(t)[(d�dt) Kn(x, t)] W 2

Q(t) dt=0, by (2.2) and (2.3)

p$n(x)=&|
�

&�
pn(t) Kn(x, t)[(d�dt) W 2

Q(t)] dt

=|
�

&�
pn(t) Kn(x, t) Q$(t) W 2

Q(t) dt

=&rn |
�

&�
pn(t)[ pn(x) pn&1(t)& pn(t) pn&1(x)]

_Q� (x, t) W 2
Q(t) dt

={rn |
�

&�
p2

n(t) Q� (x, t) W 2
Q(t) dt= pn&1(x)

&{rn |
�

&�
pn(t) pn&1(t) Q� (x, t) W 2

Q(t) dt= pn(x)

=An(x) pn&1(x)&Bn(x) pn(x). K
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Lemma 2.3. Let |x|�$an (0<$<1). Then for a certain constant c>0,

| p$n(x)| WQ(x)�cna&3�2
n

holds.

Proof. Since by [6, (12.21)] and [6, Theorem 12.3(b)] we have

An(x)tn�rn tn�an ( |x|�2an),

we see that by Schwarz's inequality

|Bn(x)|�_rn |
�

&�
p2

n(t) Q� (x, t) W 2
Q(t) dt&

1�2

__rn |
�

&�
p2

n&1(t) Q� (x, t) W 2
Q(t) dt&

1�2

�cn�an .

On the other hand, by [6, Corollary 1.4],

| pn(x)| WQ(x), | pn&1(x)| WQ(x)�ca&1�2
n ( |x|�$an).

Thus by Lemma 2.2 if |x|�$an , then

| p$n(x)| WQ(x)

�|An(x)| | pn&1(x)| WQ(x)+|Bn(x)| | pn(x)| WQ(x)

�cna&3�2
n . K

Lemma 2.4. Let |xjn |, |xj&1, n |�$an (0<$<1): and let

| pn(x� jn)|= max
xjn�x�xj&1, n

| pn(x)|, xjn<x� jn<xj&1, n . (2.4)

Then we have

(i) | pn(x� jn)| WQ(x� jn)ta&1�2
n ,

and

(ii) |x� jn&xjn |, |x� jn&xj&1, n |tan�n, (2.5)

that is,

(iii) xj&1, n&xjn tan�n.
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Proof. (i) By [6, Corollary 1.3], for xjn<xj, n+1<xj&1, n , where |xjn |,
|xj&1, n |�$an , we see

| pn(xj, n+1)| WQ(xj, n+1)ta&1�2
n . (2.6)

On the other hand, [6, Corollary 1.4] means

| pn(x)| WQ(x)�ca&1�2
n ( |x|�$an).

Therefore we have (i).

(ii) From (i) we see

ca&1�2
n �(x� jn&xjn)�| pn(x� jn)| WQ(x� nj)�(x� jn&xjn)

=| p$n(!)| WQ(x� jn) (xjn<!<x� jn). (2.7)

Since by [6, Corollary 1.2 (b)] we see

|x� jn&!|�}an �n

for some }>0, Lemma 2.1 means WQ(x� jn)�cWQ(!). Thus from (2.7) and
Lemma 2.3 we have

ca&1�2
n �(x� jn&xjn)�c | p$n(!)| WQ(!)�cna&3�2

n ,

that is,

can�n�|x� jn&xjn |.

Consequently, we obtain |x� jn&xjn |tan�n, and similarly |x� jn&xj&1, n |t
an �n.

(iii) It is trivial from (2.5). K

The following lemma is important itself. It gives certain exact values of
pn(x) in each interval

Ijn($, =)=[xjn+=an�n, xj&1, n&=an] & [&$an , $an]. (2.8)

Lemma 2.5. Let Ijn($, =) be defined in (2.8). For each 0<$<1 there
exists =>0 such that

xjn+=an�n<xj&1, n&=an�n, (2.9)

whenever |xjn |, |xj&1, n |�$an . Then

| pn(x)| WQ(x)ta&1�2
n , x # Ijn($, =), (2.10)

holds uniformly with respect to all Ijn($, =){,.
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Remark. We can also give certain exact values of p$n(x) in each interval

I� jn($, =)=[xjn&=an�n, xjn+=an�n] & [&$an , $an].

For each 0<$<1 there exists =>0 such that

| p$n(x)| WQ(x)tna&3�2
n , x # I� jn($, =),

holds uniformly with respect to all I� jn($, =){,.

Proof of Lemma 2.5. (i) It follows from Lemma 2.4(iii) that there exists
=>0 such that (2.9) holds for every j satisfying |xjn |, |xj&1, n |�$an . Let
Ijn($, =){,, then x� jn # [xjn , xj&1, n] is defined in (2.4). In each interval
(xjn , x� jn) or (x� jn , xj&1, n) the polynomial pn(x) has at most one inflection
point. We shall first consider pn(x) in [xjn , x� jn]. Then we have one of two
following cases.

(a) | pn(x)| is concave on [xjn , x� jn].

(b) There exists xjn<x$jn<x� jn such that | pn(x)| is convex on
[xjn , x$jn], and concave on [x$jn , x� jn].

Let us now define the line

y=[ | pn(x� jn)|�(x� jn&xjn)](x&xjn).

Then for the case of (a) we see

[ | pn(x� jn)|�(x� jn&xjn)](x&xjn)�| pn(x)|, x # [xjn , x� jn]. (2.11)

We shall treat the case of (b). If (2.11) is not correct, then we consider the
line

y=| p$n(xjn)| (x&xjn),

and so we see

| p$n(xjn)| (x&xjn)�| pn(x)|, x # [xjn , x� jn]. (2.12)

Using Lemma 2.4(i), (ii) and Lemma 2.1, the inequality (2.11) means

cna&3�2
n (x&xjn)�| pn(x)| WQ(x), x # [xjn , x� jn]. (2.13)

If (2.12) holds, then by Lemma 2.1 and [6, Corollary 1.3] we also obtain
(2.13). Hence if xjn+=an�n�x�x� jn , then for a constant c(=)

0<c(=) a&1�2
n �| pn(x)| WQ(x). (2.14)
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On the other hand, from [6, Corollary 1.4]

| pn(x)| WQ(x)�ca&1�2
n , |x|�$an ,

that is, with (2.14) we have for x # [xjn+=an�n, x� jn]

| pn(x)| WQ(x)ta&1�2
n . (2.15)

Similarly, for x # [x� jn , xj&1, n&=an�n] we also have (2.15). Therefore, we
obtain (2.10). K

3. PROOF OF THEOREM

Now, we shall prove the theorem. The proof is along the same lines as
Nevai's.

Proof of Theorem. We consider the space C0(&2, &1) which consists
of continuous functions on R with support in [&2, &1]. By our assump-
tion, (1.2) is satisfied for f # C0(&2, &1). Hence for the linear functional
Ln( f ) on C0(&2, &1) we can apply the uniform boundedness theorem (cf.
Theorem 10.19 of [11, p. 182]), and so for f # C0(&2, &1) we have

|
�

&�
|Ln( f ; x)| p W(x) dx�c max

&2�x�&1
| f (x)| p. (3.1)

Let [ pn(x)] be the orthonormal polynomials with respect to the weight
W2

Q(x), and for each n=1, 2, 3, ... let us consider a function gn # C0

(&2, &1) such that

max
&2�x�&1

| gn(x)|=1, gn(xkn)=sign p$n(xkn), xkn # (&2, &1).

Then we see

Ln(gn ; x)= pn(x) :
&2�xkn� &1

| p$n(xkn)|&1 (x&xkn)&1.

By [6, Corollary 1.3]

| p$n(xkn)| &1
tn&1a3�2

n , &2�xkn�&1,

and Lemma 2.4(iii)

Num. [[k ; xkn # [&2, &1]]]tn�an ,
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where Num. [S] denotes the number of elements of the set S. Thus for
x>0

|Ln(gn ; x)|�c(1+x)&1 | pn(x)| n&1a3�2
n na&1

n

=ca1�2
n (1+x)&1 | pn(x)|. (3.2)

From (3.1) and (3.2),

A=lim sup
n � �

|
�

0
|a1�2

n pn(x)�(1+x)| p W(x) dx

�c lim sup
n � �

|
�

0
|Ln(gn ; x)| p W(x) dx

�c max
&2�x� &1

| gn(x)| p

=c<�. (3.3)

Let us define

Ijn=Ijn(=)=[xjn+=an�n, xj&1, n&=an�n],

I� jn=I� jn(=)=[xj&1, n&=an�n, xj&1, n+=an�n], j=2, 3, 4, ... .

Let 0<$<1, then, from (2.14),

| pn(x)| WQ(x)�ca&1�2
n , x # Ijn & [0, $an],

where c is independent of n. Thus by (3.3)

c :
n

j=2
|

Ijn & [0, $an]
|W &1

Q (x)�(1+x)| p W(x) dx�A. (3.4)

Therefore, we also see that by exchanging n for n+1 in (3.4) we have

c :
n+1

j=2
|

Ij, n+1 & [0, $an+1]
|W &1

Q (x)�(1+x)| p W(x) dx�A. (3.5)

Here, we can show that for a certain =>0,

I� jn(=) & [0, $an]/Ij, n+1(=) & [0, $an+1]. (3.6)
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In fact, by (2.6) for |xj, n+1 |�$an there exists c>0 such that

ca&1�2
n �| pn(xj, n+1) WQ(xj, n+1)|

=|[ pn(xj, n+1)�(xj, n+1&xjn)] WQ(xj, n+1)| (xj, n+1&xjn)

�c | p$n(!) WQ(!)| (xj, n+1&xjn)

�cna&3�2
n (xj, n+1&xjn)

(see Lemma 2.3). Thus we see

can�n�(xj, n+1&xjn),

consequently, we have

xj, n+1&xjn , xj&1, n&xj, n+1 tan�n.

This means (3.6). Hence by (3.5) and (3.6)

:
n

j=2
|

I� jn & [0, $an]
|W &1

Q (x)�(1+x)| p W(x) dx

�c :
n+1

j=2
|

Ij, n+1 & [0, $an+1]
|W &1

Q (x)�(1+x)| p W(x) dx�A. (3.7)

Using (3.4) and (3.7), we conclude

|
$an

0
|W &1

Q (x)�(1+x)| p W(x) dx�cA,

where c is independent of n. Therefore

|
�

0
|W &1

Q (x)�(1+x)| p W(x) dx�cA. (3.8)

Similarly, we have

|
0

&�
|W &1

Q (x)�(1+|x| )| p W(x) dx�cA. (3.9)

Consequently, by (3.8) and (3.9) we have (1.3), that is, the theorem
follows. K
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